
Team Members: Erik Gui (cs184-cx) and Alex Nisnevich (cs184-dp)
SID: 21178740 and 21323554
Email: erik.gui@berkeley.edu and alex.nisnevich@berkeley.edu

CS184 Final Project: JezzBall 3D

1 Project Description

In this project, we have successfully added a new dimension to the classic video game JezzBall. Instead
of using a plane as the field of play, we created a rectangular prism for the player to partition by drawing
prismatic walls. Each level is completed when the player partitions the playfield so that 80% of the volume
is unreachable by the red-and-white colored balls. All of the features of the original JezzBall, including UI,
sound effects, and control scheme, are extended in our JezzBall 3D. While we have maintained the retro feel
of the game, a variety of challenges arose with adding another dimension. Below we describe the four main
challenges that we faced in creating our project.

You can watch a gameplay demonstration video at http://www.youtube.com/watch?v=6CefcmQnUEo .

2 Project Challenges

1. Realistic Collision Physics: Erik and Alex

There are three main types of collisions that we simulated in our project. In keeping with the physics
in the original JezzBall, all collisions are perfectly elastic, and all objects have constant velocity.

• Ball-to-Ball: This type of collision occurs when two balls collide while wandering about the
playfield. To simulate this collision as realistically as possible, we have used a 3D collision detector
written by Thomas Smid (http://bit.ly/j0ze4Q) that deals with elastic collision. When a ball-
to-ball collision occurs, we modify the velocity vector of the balls in keeping with Smid’s algorithm,
but then normalize it to preserve constant velocity.

• Ball-to-Wall: This type of collision occurs when a ball hits either a player-constructed wall or
the edge of the playfield. Let pn be a ball’s position in frame n and r be the ball’s radius. A
collision in frame n for a given ball is detected if pn+1 + r and pn+1 − r fall on different sides of
a wall or playfield edge. When a collision is detected, the ball’s incident direction with respect to
the wall’s surface is reversed, maintaining the ball’s current velocity.

1 of 2



Team Members: Erik Gui (cs184-cx) and Alex Nisnevich (cs184-dp)
SID: 21178740 and 21323554
Email: erik.gui@berkeley.edu and alex.nisnevich@berkeley.edu

• Wall-to-Wall: In many cases, a player-constructed wall would also collide with other walls
that exist in the playfield. This type of collision is essential for partitioning the balls to smaller
and smaller volumes. Since walls only expand in two directions at a time in Jezzball, wall-
to-wall detection consists of detecting whether one of two rectangles falls within a box. We
accomplished this using the IsLineInBox function written by 3D Programming Weekly (http:
//bit.ly/jHr08n), thus turning wall-to-wall detection into a series of eight IsLineInBox tests
(four for each of two rectangles being tested for each wall). Originally, we ran these these tests
every frame, but we found this to be redundant: instead, when a wall is drawn, we temporarily
maximize its length, find the closest collision point in each direction, and store this information,
thus only having to run collision tests when a wall is instantiated.

2. Intuitive Control Scheme: Alex

Preliminary research for this project showed that all previous 3D implementations of JezzBall that
have been made either relied on keyboard-based controls (http://bit.ly/mvl48O) or were not fully
3D to begin with (http://bit.ly/jlZUXX). Thus, one of our primary goals for this project was to
create an intuitive mouse-based control system, which carried with it its own set of challenges, as we
needed to come up with a good way of converting 2D mouse coordinates to 3D playfield coordinates.
After reaching a number of dead ends, we found out about the gluUnProject function, which retrieves
the object coordinates of the point that the mouse is currently pointing towards. By creating invisible
polygons along the faces of the playfield, we were able to use gluUnProject to map mouse coordinates
to playfield coordinates, which we could use for obtaining the position of the 3D cursor.

3. Calculating Unreachable Volume: Alex

The winning condition for each level is to clear 80% of the play field - that is, to partition the play field
in such a way that at least 80% of it is unreachable to the balls. However, because the playfield can
be partitioned into irregular shapes, determining the exact percentage of volume that is unreachable is
non-trivial. Originally, our plan was to have the Box class subdivide itself over the course of gameplay
and keep track of which balls fall within which boxes, but this proved to be too complicated.

Our solution came when we decided to make the game operate with a discrete grid, like in the original
Jezzball game. We divided the box into 40 · 20 · 20 = 8000 cubic cells, and had the player-made walls
snap to the grid. Now that there were only a finite number of cells to work with, it wasn’t too hard
to set up a simple algorithm for calculating unreachable space. Wall positions are stored in a three-
dimensional boolean array, and whenever a wall is completed, a recalulation of space occurs as follows:
a ”virus” appears in each cell where a ball currently is, and over a series of 40+20+20 = 80 iterations,
the virus spreads between adjacent cells, stopped only by walls. After 80 iterations, whichever cells
are not occupied by the ”virus” are the unreachable cells.

4. Simple and Interesting Game UI, Effects, and Sound: Erik

The UI of our project follows that of the original game. We displayed a text overlay with gameplay
information by setting up an orthogonal projection covering the window, using the glRasterPos2i

function to set text coordinates, and using the glutBitmapCharacter function to print character
arrays into those coordinates. As for game effects, the ball is seen as a rotating red and white sphere,
which we implemented not through textures but by drawing a white sphere infintesimally close to a
red sphere and moving the white sphere in a circular path around the center of the red sphere.

For game sound, we tried a variety of cross-platform sound libraries, such as OpenAL, GLFW, sfml,
and SDL mixer, but found that they were all rather difficult to integrate into our project and gen-
erally unfriendly with GLUT. Instead of a cross-platform solution, we settled on using the Windows
playSound function in mmsystem.h, which was remarkably easy to use. We made sure that sounds
would fail gracefully on MacOS X through a preprocessor switch.

2 of 2


